Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → FAKTEN

MELDUNG/070: Neue hochauflösende Methoden in der Fluoreszenzmikroskopie (idw)


Ruprecht-Karls-Universität Heidelberg - 02.03.2011

Neue hochauflösende Methoden in der Fluoreszenzmikroskopie

Heidelberger Wissenschaftler nutzen lichtunabhängigen Prozess mit chemisch schaltbarer Sonde


Mit Hilfe chemischer Verfahren können physikalische Beschränkungen in der hochauflösenden Lichtmikroskopie umgangen werden. Forscher des Physikalisch-Chemischen Instituts und des Exzellenzclusters "CellNetworks" der Universität Heidelberg haben eine neue Methode entwickelt, bei der anstelle von lichtabhängigen Prozessen chemische Reaktionen zum Einsatz kommen, um zelluläre Strukturen für hochauflösende lichtmikroskopische Untersuchungen zu markieren. Diese Methode ermöglicht neue Anwendungsgebiete für die Fluoreszenzmikroskopie. Die Ergebnisse wurden online in der Zeitschrift "Angewandte Chemie International Edition" veröffentlicht.

Die Fluoreszenzmikroskopie ist eine weit verbreitete Methode, um Zellbestandteile zu untersuchen. Allerdings verhindert die sogenannte Beugungsgrenze detaillierte Einblicke in zelluläre Strukturen: Danach lassen sich Objekte, die weniger als 0,3 Mikrometer voneinander entfernt liegen, nicht mehr getrennt voneinander abbilden. Um diese Grenze zu umgehen, wurden neue Methoden entwickelt, zu denen beispielsweise die Stochastische Optische Rekonstruktionsmikroskopie (STORM) zählt. Dabei werden Zellstrukturen mit fluoreszierenden Farbstoffen markiert und durch Licht einer bestimmten Wellenlänge angeregt und sichtbar gemacht. Eine hohe Auflösung von ungefähr 0,02 Mikrometer wird erreicht, indem die Mehrzahl der Farbstoffe ausgeschaltet und nur eine geringe Anzahl angelassen wird, so dass das ausgesandte Licht benachbarter Farbstoffe nicht mehr überlagert abgebildet wird. Dieses Schalten der Farbstoffe wird ebenfalls durch Licht gesteuert. Die Position der angeschalteten Farbstoffe lässt sich über eine mathematische Analyse mit sehr hoher Präzision von ungefähr 0,003 Mikrometer bestimmen. Die mehrfache Wiederholung dieser Prozedur liefert exakte Informationen über den Aufenthaltsort aller Farbstoffe und lässt damit eine hochauflösende Rekonstruktion der untersuchten Zellstrukturen zu.

Diese Untersuchungsmethode stellt allerdings besondere Anforderungen an das Mikroskop und die eingesetzten Lichtquellen: Um die jeweiligen Farbstoffe zu schalten, werden entweder unterschiedliche Laserlinien oder hohe Lichtintensitäten oder auch beides zugleich benötigt, was bei der Untersuchung lebender Zellen problematisch werden kann. Das Team um den Heidelberger Chemiker Dr. Dirk-Peter Herten hat das Schalten von Farbstoffen mit Hilfe von Laserlicht durch einen lichtunabhängigen Prozess ersetzt. Dabei passten die Wissenschaftler eine chemische Sonde zum Nachweis von Kupferionen so an, dass diese Sonde mit ihren fluoreszierenden Eigenschaften zur Markierung von zellulären Strukturen genutzt werden kann. Bindet Kupfer(II) an diese Sonde, wird deren Fluoreszenz gelöscht. Diese Bindung des Kupfer(II)-Ions ist umkehrbar, wobei auch die Fluoreszenz der Sonde wiederhergestellt wird. Somit wird die mikroskopische Untersuchung der Zellstrukturen mit Hilfe einer umkehrbaren, das heißt reversiblen, chemischen Reaktion gesteuert.

Die Wissenschaftler haben die Methode CHIRON - chemically improved resolution for optical nanoscopy - genannt. Damit lassen sich laut Dr. Herten Mikroskopieverfahren wie STORM soweit vereinfachen, dass auf den Einsatz zusätzlicher Laserlinien und auf hohe Lichtintensitäten verzichtet werden kann. Stattdessen muss lediglich die Sonde in einer zellulären Umgebung vorliegen, der kleinste Mengen von Kupfersulfat zugegeben werden können, zum Beispiel fixierte Zellen. "Damit ergeben sich neue Anwendungsgebiete für die hochauflösende Mikroskopie, die vorher wegen technischer Beschränkungen unzugänglich waren, denn unsere Sonden lassen sich auf vielen Mikroskopen einsetzen", erläutert Dr. Herten.

Informationen im Internet können unter der Adresse
www.bioquant.uni-heidelberg.de/research/groups/single_molecule_spectroscopy.html
abgerufen werden.

Originalveröffentlichung:
M. Schwering, A. Kiel, A. Kurz, K. Lymperopoulos, A. Sprödefeld, R. Krämer, D.-P. Herten:
Far-Field Nanoscopy with Reversible Chemical Reactions /
Hochauflösende Mikroskopie mit reversiblen chemischen Reaktionen.
Angewandte Chemie International Edition, 15. Februar 2011,
doi: 10.1002/anie.201006013

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution5


*


Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Ruprecht-Karls-Universität Heidelberg, Marietta Fuhrmann-Koch, 02.03.2011
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 5. März 2011