Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

FORSCHUNG/961: Ein neuer Dreh für Quantensysteme (idw)


Eidgenössische Technische Hochschule Zürich (ETH Zürich) - 17.04.2013

Ein neuer Dreh für Quantensysteme

Physiker der ETH Zürich haben eine Methode entwickelt, um Quantensysteme präzise steuern zu können. Dafür nutzen sie einen Trick, der auch Katzen hilft, auf den Pfoten zu landen, und Autofahrern, seitlich einzuparkieren. Die Methode könnte zur Entwicklung von zuverlässigen Quantenrechnern führen.



Ein Auto in eine Parklücke längs der Fahrbahn zu manövrieren, kann eine grosse Herausforderung sein. Einfach wäre die Aufgabe freilich, wenn sich das Fahrzeug seitwärts bewegen liesse. Da dies nicht möglich ist, muss die Verschiebung zur Seite durch eine Aneinanderreihung von Vor- und Rückwärtsbewegungen und von Lenkeinschlägen mehr oder weniger elegant zusammengestückelt werden. Eine solch fein abgestimmte Abfolge von Bewegungen ist es auch, die es Katzen ermöglicht, nach einem freien Fall stets auf ihren Pfoten zu landen. Ein ähnliches Prinzip haben Forschende der ETH Zürich nun dazu verwendet, ein Quantensystem in einen vorgegebenen Zustand zu lenken. Diese neue Art der Kontrolle sollte in Situationen nützlich sein, in denen Quantensysteme präzise gesteuert werden müssen, im Besonderen im Zusammenhang mit Quantenrechnern.

Greifbare Quantenwelt

Für ihre Forschung arbeiten die Wissenschaftler in der Gruppe von Andreas Wallraff, Professor am Laboratorium für Festkörperphysik, mit «künstlichen Atomen» aus elektronischen Schaltkreisen, die sie mit Mikrowellenpulsen steuern. Diese Schaltkreise beinhalten supraleitende Komponenten - Bauteile also, in denen ein elektrischer Strom ohne Widerstand fliessen kann -, sie messen typischerweise Bruchteile eines Millimeters. «Für einen Quantenphysiker sind diese Schaltkreise enorm grosse Objekte, aber sie legen ein Verhalten an den Tag, das dem von Atomen sehr ähnlich ist», erklärt Wallraff.

Die Forscher setzen auf solche Schaltkreise, weil deren Design und deren Eigenschaften im Vergleich zu natürlichen Quantensystemen - wie etwa Atome, Elektronen oder Photonen - einfach für verschiedene Anwendungen angepasst werden können. Ausserdem können die Wissenschaftler in diesen supraleitenden Schaltkreisen fragile Quantenzustände während mehrerer Mikrosekunden aufrechterhalten, was einer verhältnismässig langen Zeit entspricht. Diese Zeit kann dazu genutzt werden, die Zustände mit den Mikrowellenpulsen zu manipulieren, sei es, um die Quantenzustände selbst zu untersuchen, oder um sie in einem Quantenrechner zu verwenden.

Den richtigen Dreh gefunden

Den Quantenzuständen droht jedoch Gefahr von aussen: Ebenso wie natürliche Quantensysteme sind auch die Quanten-Schaltkreise höchst empfindlich gegenüber Störungen, verursacht etwa durch nicht perfekte Abschirmungen. Die ETH-Forscher haben nun unter der Leitung von Stefan Filipp, Wissenschaftler in der Gruppe von Wallraff, einen möglichen Weg gefunden, um die Steuerung stabil gegenüber Störeinflüssen zu machen. Sie nutzen dafür die Geometrie des sogenannten Hilbert-Raumes aus. Dieser abstrakte Raum ist der «natürliche Lebensraum» eines quantenmechanischen Systems. Ebenso wie ein Auto durch einen zweidimensionalen Raum gesteuert wird, kann ein Quantensystem durch den Hilbert-Raum bewegt werden.

Sowohl beim Einparkieren wie auch beim Steuern eines Quantensystems ist die spezifische Abfolge der Operationen wichtig. Wenn der Autofahrer beispielsweise zuerst alle Lenkbewegungen vollzieht und danach alle Vor- und Rückwärtsbewegungen, dann führt dies kaum zu einem erfolgreichen Parkiervorgang. Ähnlich verhält es sich mit den künstlichen Atomen der ETH-Physiker, welche sie mit Mikrowellenpulsen steuern. «Wir erzielen verschiedene Endresultate, je nachdem in welcher Reihenfolge wir die einzelnen Pulse anwenden, obwohl die Pulse die gleiche Form, die gleiche Energie und die gleiche Länge haben. Dies lässt sich nur durch die verschiedenen Wege erklären, die das System durch den Hilbert-Raum nimmt», sagt Stefan Filipp.

Auf dem Weg zu einem Quantencomputer

«Wir haben es zum ersten Mal überhaupt geschafft, diese spezifische Art von Steuerung an einem isolierten Quantenobjekt durchzuführen und den Vorgang detailliert zu untersuchen», ergänzt Abdufarrukh Abdumalikov, ebenfalls Wissenschaftler in der Gruppe von Wallraff. Wesentlich zum Erfolg der ETH-Physiker beigetragen hat, dass die Wissenschaftler mit relativ kurzen Mikrowellenpulsen arbeiten. «Dadurch können wir die Operationen schnell durchführen, bevor Störungen den Quantenzustand unwiderruflich zerstören», sagt Abdumalikov.

Die Forscher erwarten, dass ihre Methode einen gangbaren Weg in Richtung eines praktischen Quantencomputers vorzeichnet. An der Entwicklung solcher Geräte, welche die Gesetze der Quantenmechanik zur Bewältigung von Rechenaufgaben nutzen, wird derzeit in der Physik intensiv geforscht. Denn die Quantenphysik eröffnet ein ganzes Spektrum an neuen Möglichkeiten zur Informationsverarbeitung. So erhofft man sich von Quantenrechnern, dass sie eines Tages helfen, Probleme zu lösen, die rechnerisch zu aufwendig sind, als dass sie ein konventioneller Computer jemals in nützlicher Zeit lösen könnte.


Abdumalikov AA, Fink JM, Juliusson K, Pechal M, Berger S, Wallraff A, Filipp S: Experimental Realization of Non-Abelian Non-Adiabatic Geometric Gates. Nature, 2013, doi: 10.1038/nature12010

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution104

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Eidgenössische Technische Hochschule Zürich (ETH Zürich), Roman Klingler, 17.04.2013
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 20. April 2013