Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

MELDUNG/300: Schnelle Entmagnetisierung durch Spintransport (idw)


Helmholtz-Zentrum Berlin für Materialien und Energie GmbH - 28.01.2013

Schnelle Entmagnetisierung durch Spintransport



Dass ein ultrakurzer Laserpuls eine ferromagnetische Schicht im Nu entmagnetisieren kann, ist seit etwa 1996 bekannt. Doch wie diese Entmagnetisierung funktioniert, ist noch nicht verstanden. Nun haben die Physikerin Dr. Andrea Eschenlohr und ihre Kollegen vom Helmholtz-Zentrum Berlin und der Universität Uppsala in Schweden gezeigt, dass es offenbar nicht der Lichtpuls selbst ist, der die Entmagnetisierung bewirkt.

Sie bestrahlten dafür zwei unterschiedliche Schichtsysteme mit extrem kurzen Laserpulsen von nur hundert Femtosekunden (10- 15 s). Während eine Probe im Wesentlichen aus einer dünnen ferromagnetischen Nickelschicht bestand, war in der anderen Probe diese Nickelschicht von einer unmagnetischen Goldschicht bedeckt. Obwohl sie nur 30 Nanometer (10-9m) dick war, schluckte die Goldschicht den Großteil des Laserlichts, in der Nickelschicht kam kaum noch Licht an. Dennoch nahm die Magnetisierung der Nickelschicht kurz nach dem Eintreffen des Laserpulses in beiden Proben rasch ab, bei der goldbeschichteten Probe allerdings um Sekundenbruchteile später. Dies konnten die Forscher durch Messungen mit zirkular polarisierten Femtosekunden-Röntgenpulsen beobachten, die sie am Femtoslicing-Strahlrohr am Berliner Elektronenspeicherring BESSY II durchführten, den das HZB betreibt.

"Wir konnten damit experimentell zeigen, dass dabei die ultraschnelle Entmagnetisierung nicht durch das Licht selbst bewirkt wird, sondern durch heiße Elektronen, die der Laserpuls erzeugt", erklärt Andrea Eschenlohr. Die so angeregten Elektronen können sich über kurze Distanzen, also durch die hauchdünne Goldschicht, extrem rasch bewegen. Sie transportieren damit ihr magnetisches Moment (den "Spin") auch in die ferromagnetische Nickelschicht, so dass dort die vorherrschende magnetische Ordnung zusammenbricht. "Eigentlich wollten wir sehen, wie wir die Spins mit dem Laserpuls beeinflussen können", erklärt der Leiter des Experiments Dr. Christian Stamm. "Dass wir aber direkt beobachten konnten, wie diese Spins wandern, war eine Überraschung."

Laserpulse sind damit eine Möglichkeit, gezielt "Spinströme" zu erzeugen, bei denen Spin an Stelle von elektrischer Ladung übertragen wird. Diese Beobachtung ist für das Forschungsgebiet der Spintronik interessant. Dabei entwerfen Forscher neue Bauelemente aus magnetischen Schichtsystemen, die mit Spins anstatt mit Elektronen "rechnen" und dadurch Informationen extrem schnell und energiesparend verarbeiten und speichern können.

Dr. Andrea Eschenlohr war bis Ende 2012 am HZB beschäftigt, wo sie die hier vorgestellten Ergebnisse im Rahmen ihrer Doktorarbeit erzielte. Sie ist seit Januar als wissenschaftliche Mitarbeiterin an der Universität Duisburg-Essen tätig.

Die Arbeit "Ultrafast spin transport as key to femtosecond demagnetization" erscheint ab Sonntagabend, den 27.1.2013, auf der Webseite von Nature Materials unter dem DOI 10.1038/nmat3546

Weitere Informationen unter:
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13657&sprache=de&typoid=
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3546.html

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution111

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Dr. Ina Helms,
28.01.2013
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 30. Januar 2013